Single-stranded DNA binding to the transcription factor PafBC triggers the mycobacterial DNA damage response.

Single-stranded DNA binding to the transcription factor PafBC triggers the mycobacterial DNA damage response.

Publication date: Feb 07, 2025

The DNA damage response in mycobacteria is controlled by the heterodimeric transcription factor PafBC, a member of the WYL domain-containing protein family. It has been shown that PafBC induces transcription of its regulon by reprogramming the housekeeping RNA polymerase holoenzyme to recognize PafBC-dependent promoters through sigma adaptation. However, the mechanism by which DNA damage is sensed and translated into PafBC activation has remained unclear. Here, we demonstrate that the binding of single-stranded DNA (ssDNA) to the WYL domains of PafBC activates the transcription factor. Our cryo-electron microscopy structure of full-length PafBC in its active conformation, bound to the transcription initiation complex, reveals a previously unknown mode of interaction between the ssDNA and the WYL domains. Using biochemical experiments, we show that short ssDNA fragments bind to PafBC dynamically, resulting in deactivation as ssDNA levels decrease postrepair. Our findings shed light on the mechanism linking DNA damage to PafBC activation and expand our understanding of WYL domain-containing proteins.

Open Access PDF

Concepts Keywords
Complex Bacterial Proteins
Housekeeping Bacterial Proteins
Mycobacteria Cryoelectron Microscopy
Polymerase DNA Damage
Reprogramming DNA, Bacterial
DNA, Bacterial
DNA, Single-Stranded
DNA, Single-Stranded
Models, Molecular
Mycobacterium
Protein Binding
Protein Domains
Transcription Factors
Transcription Factors

Semantics

Type Source Name
disease MESH DNA damage
pathway KEGG RNA polymerase
disease IDO protein

Original Article

Leave a Comment

Your email address will not be published. Required fields are marked *